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ABSTRACT

UAVs provide exceptional capabilities and a myriad of potential mission sets, but the ability
to disguise where the aircraft takes off and lands would expansively advance the abilities
of UAVs. This thesis describes the development of a nonlinear estimation algorithm
to predict the terminal location of an aircraft and a trajectory optimization strategy to
mitigate the algorithm’s success. Vehicle paths are generated using amatrix-based quadratic
trajectory computation method. The paths are then tracked by recursively updating time-
based observations of vehicle position using Bayesian filtering. The KL divergence is used
to compare the probability density of aircraft termination to a normal distribution around the
true terminal location. Results show that the optimal conditions to obfuscate path include
waypoints at or beyond the vehicle terminal location, variations in velocity throughout the
time of flight, and the minimal use of an aircraft’s maximum potential time of flight.
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Executive Summary

Unmanned Aerial Vehicles (UAVs) have matriculated into every battlespace imaginable.
From shipboard operations to launches from torpedo tubes, innovation has seen UAVs
performing a myriad of mission sets with many more possible. The ability to obfuscate a
vehicle’s termination point would allow the user to increase its potential mission sets and
improve a UAVs utility. This work focuses on the obfuscation of terminal location and
further seeks to determine if the vehicle’s starting point is compromised from an observed
portion of its path.

This thesis describes the development of a nonlinear estimation algorithm to predict the ter-
minal location of an aircraft and a trajectory optimization strategy tomitigate the algorithm’s
success. A recursive Bayesian filtering scheme is used to assimilate noisy measurements of
the UAVs position to predict its terminal location. We use a blackbody radiation-based like-
lihood function tuned to the UAVs known endurance limitations to assimilate the position
measurements. A quadratic trajectory generation method with waypoint and time variation
is used to produce a parameterized family of potential aircraft trajectories. The estimation
algorithm is then used to assess parameterized UAV trajectories that minimize certainty of
the true terminal location. The KL divergence is used to compare the probability density of
aircraft termination to a normal distribution around the true terminal location. Confidence
intervals with user input values for specificity of starting point are used to indicate the
susceptibility of an operator’s starting point as a result of the vehicle’s path. Results show
that the greatest obfuscation of path directly correlates to variations in time of flight with
respect to the vehicle’s maximum possible flight time while the successful prediction of
vehicle starting location is a function of the specificity required by the user.
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CHAPTER 1:
Introduction

Unmanned aerial vehicles (UAVs) have been one of the most frequently discussed topics in
the Department of Defense and in the public domain as well. Their potential abilities and
missions are dynamically expanding. Only naming a few capabilities, UAVs are used in
the modern battlesapce to perform information, surveillance, and reconnaissance missions
(ISR), launch strikes on enemy targets, and coordinate unit communication. Although a
protean platform possessing innumerable skills, the UAV carries with it a diverse set of
challenges. This work looks to explore potential solutions to the difficulties presented to a
UAV and its operator as a result of its vulnerability to tracking and accidental disclosure of
operator locations and objectives.

1.1 Motivation
UAVs are being used extensively to expand the reaches of surveillance and the mission
capabilities of military units. Deploying a UAV from a submarine provides interesting
extensions of control, including increased surveillance, weapons capabilities, and commu-
nication. Currently, UAVs deployed from submarines are considered to be disposable and
launching an aircraft guarantees that it will strategically crash after it has completed its
mission or run out of fuel. A recoverable UAV would save space on the boat, minimize
cost, increase payload capabilities, and promote independence since the vehicle does not
need to communicate throughout the life of its mission, as data can be gathered physically
after UAV recovery.

Though recoverable UAVs present operational advantages, the issue of recoverability also
poses challenges. UAV recovery by a submarine may compromise stealth. Tracking a UAV
throughout its time of flight until mission termination could potentially draw unwanted
attention to the deployed vehicle. The goal of this work, through the application of path
planning, is to optimize flight trajectories of UAVswhileminimizing the risk of an observing
entity predicting terminal location. Obfuscation of a search pattern and use of natural
barriers to tracking, such as sea state, altitude, and the position of the sun, could all be used
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in designing a program that allows for the recovery of UAVs without compromising the
location of an evader.

An additional extension of the problem of observable flight produces the issue of not only
revealing the position of the operator at termination, but also at the launch of the UAV.
While an observer might not be able to immediately detect the UAV upon launch, any
observation of the vehicle during its flight could provide the enemy with an indication of
where the operator’s location currently or at some previous point in time. A study looking at
the probability of an enemy determining the operator’s location will indicate the magnitude
of the threat presented by observable flight. In turn, this will highlight the potential need
to randomize the UAV’s path with preference towards obfuscating the launch location in
addition to potential recovery positions as well.

1.2 Unmanned Vehicle Implementation in the Undersea
Domain

From the genesis of anti-submarine warfare, aviation has been on the front lines of the
effort. As vessels that traveled primarily on the surface in the early years, submarines
were largely susceptible to surveillance from aircraft. With the development of technology
throughout the years, submarines could be placed in danger by depth charges as well [1].
Emerging technology continued in both the undersea and air domains, one field continually
attempting to match and outstrip the capabilities of the other. The U.S. Navy’s capabilities
in the field of maritime patrol relied primarily on the P − 3C Orion for the almost half of a
century. Launched as a part of the Navy’s fleet in 1962 [2], the P− 3 has served as the front
line for submarine detection and battlespace dominance throughout the Cold War and into
the conflicts in Iraq and Afghanistan. With long-range electro-optical cameras and special
imaging radar that has been continuously updated with advancing technology, the P − 3,
the Navy’s main air anti-submarine warfare asset, was capable of extending its abilities to
an effective range of 2, 380 nautical miles [2]. At 10.5 hours of flight time per mission
provided for over fifty years [2], the P − 3 was unmatched in its capabilities throughout its
service life.

New technology, advancing rapidly and outstripping the design of the P − 3, proved that
antiquated airframes would no longer be capable of supporting the necessary mission set.
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Boeing stepped in with the 737 − 800ERX airframe to fill the void and replace the aging
P − 3. Designated as the P − 8A Poseidon, the Navy planned to utilize the airframe as
a shell that would support rapidly developing technology and its seamless integration for
battlespace dominance [3]. Compared to the P − 3 from a technical standpoint, the P − 8
sacrifices on-board weapons capabilities for increased sensors and technology. While the
P − 8’s mission altitude is not published, it has a ceiling of 41, 000 feet, cruising speed
of 490 knots, and an innovative airframe design [3]. All of these factors readily lend
to the conclusion that it has a comfortable operating mission altitude much higher than
the P − 3, which operated on station at 1, 500 feet [2]. So, while able to capitalize on
emerging technology, the P − 8 still leaves vulnerabilities in the U.S. Navy’s ability to
achieve dominance of the undersea warfare domain. UAVs, as features in the undersea
warfare battlespace, have recently started to emerge as possible solutions to fulfilling the
mission areas that the P − 8 might not be able to cover.

The Navy, as recently as 2010, began incorporating the idea of submarine-launched
UAVs [4]. Airframes such as the Switchblade have been investigated as potential workhorses
for the developing form of the Navy’s ISR mission [5]. Former head of undersea warfare
(N97), Rear Admiral Barry Bruner expressed his satisfaction with the developing technol-
ogy.“You can launch it, you can control it, you can get video feedback to the submarine. It
sure beats the heck out of looking out of a periscope at a range of maybe 10, 000 to 15, 000
yards on a good day. Now you’re talking 20 to 40 miles” [5]. RADM Bruner’s expression
of the capability of a UAV back in 2012 accurately describes how valuable a UAV can be
to a submarine conducting predictive path monitoring, surveillance, jamming, or any other
of a host of capabilities possible with UAVs. While Switchblade was the UAV of the past,
the Navy has invested in AeroVironment’s Blackwing as its submarine-launched UAV of
the future. Having recently signed a procurement contract with the company, the UAV
provides a plethora of capabilities to support U.S. dominance in the undersea domain. The
Blackwing has demonstrated it can operate in three key areas successfully that are crucial
to a submarine-launched UAV’s mission: acting as a Command and Control (C2) data and
communication relay, use of secure digital datalink (DDL), and the ability to link with a
swarm of unmanned undersea vehicles [6].

The ability of a UAV to operate as a C2 hub to link platforms and coordinate communication
is vital to the success of a submarine-launched UAV. While this not only extends the
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Figure 1.1. A potential future operating concept in undersea warfare demon-
strating swarm networking. Source: [7].

capabilities of single submarine, this allows for an entire network of submarines, UUVs, and
UAVs to be linked seamlessly in coordinated communication. With the Navy’s continuing
developments in data transmission through lasers and their propagation paths in the undersea
domain, the swarm network’s capabilities could continue to extend further and further. The
success of the C2 mission, however, relies entirely upon the security of the communications
and data being transmitted. TheBlackwing’s demonstrated capability to use the provenDDL
network already in use by the Navy guarantees the security of the information and further
opens up possibilities for the missions the UAV can perform. Last, but perhaps the most
important of the key capabilities as it relates to future advancement, is Blackwing’s ability to
operate as a part of a swarm. This testing is crucial to the development of future mission sets
in a coordinated undersea domain as multiple assets can be used in coordination to achieve
a mission. Figure 1.1 shows a U.S. Navy concept of what a coordinated battlespace of the
future might look like. While there are already four vehicles in Figure 1.1, a coordination
of four vehicles could likely be on the lower end of potential swarm sizing. Dependent
upon data transmission distances and the ability to avoid degraded command and control,
the size of an undersea swarm could grow as large as the theater commander requires.

While the Blackwing provides fantastic capabilities to the Navy moving forward, many
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other potential UAVs are in development to achieve dominance of the undersea battlespace.
One such example of an emerging prototype is an unmanned vehicle that has the capability
to operate as both an unmanned underwater and aerial vehicle. The vehicle utilizes a
multipurpose aileron allowing for controllability in flight and flipper-like function when
in the water for additional propulsion and control [8]. The flying swimmer (Flimmer)
would generate an entirely different mission set than previously seen in undersea warfare.
Flimmer could be deployed independently with its own ISR mission or in coordination with
a submarine with a potential for recovery.

The idea of recovering a deployed asset from a submarine is far from a revolutionary idea.
The U.S. Navy’s SEAL teams regularly coordinate operations with submarines using an
attachable dry dock shelter or built-in lockout shelters. UAVs deployed to support these
missions would allow the SEAL teams advanced “eyes on target” and could even reduce the
amount of equipment they need to carry such as long-range communications equipment.
UAVs deployed in this fashion could be recovered by the SEAL team upon rendezvous with
the submarine or, if requiring greater secrecy, a submersible UAV like Flimmer could be
used and recovered in a submerged condition.

UAVs offering submerged recovery could be used in a plethora of ways beyond deployment
alongside a special forces unit. In its very nature, a submarine maintains its value by
preserving its ability to avoid detection. A UAV that is recoverable in a submerged state
could perform all ISR missions that other UAVs perform, but it would avoid the need of
the submarine to maintain communication throughout its time of flight. Using a hydrogen
cell, as has been tested in UAVs at the Naval Research Laboratory, a UAV could achieve
an endurance in excess of 24 hours. At a cruise speed of 30 knots, this UAV could
perform missions covering 720 nautical miles. To put this in perspective, a submarine
could launch the UAV from the Persian Gulf with a mission in Baghdad and the potential
for recovery. Further, a UAV deployed from the Persian Gulf could transit all the way to the
Mediterranean and rendezvous with a ship there. While these are both hypothetical transits,
they demonstrate the innumerable opportunities that an increased battery life presents in
terms of potential missions and the ability of a boat to perform missions with extreme
standoff ranges.

Large standoff ranges do not necessarily mean UAVs need to perform missions at such
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distances. Short distance missions may provide even better strategic advantage, especially
with the continuing development of swarm technology associated with UAVs. Blackwing
has already demonstrated capability to perform swarm work with undersea assets and the
capability could readily translate to coordination with multiple aerial vehicles. Because
the Blackwing only has a battery life of 60 minutes, it would be an ideal vehicle to deploy
against a surface vessel as a part of a swarm. Multiple UAVs deployed against a surface
vessel would be able to neutralize the vessel using non-lethal force, with an electromagnetic
pulse or jamming payload, and avoid destruction by any anti-air assets because of their
small, insignificant radar signature. While this is just one example of swarm tactics, the
addition of this feature to the Navy’s UAV squadron would strengthen an already expansive
repertoire of capabilities.
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CHAPTER 2:
Background

In this chapter, we examine prior research and developments in the fields of vehicle tracking,
path planning, and extrapolation for intercept. This overview, based on previous work by
the author [9], is presented in three distinct sections: The Observer, The Vehicle, and
Extrapolation Methods.

2.1 The Observer

2.1.1 Problem Definition
Randomized path optimization is a relatively new field, particularly with its application
to UAV path planning. Prior to the path optimization problem, consider the problem of
predicting the terminal location of an unmanned vehicle given measurements of its position
over the course of its trajectory. Let the unmanned vehicle’s position as a function of time,
t, be r (t) = [x(t), y (t)]. The time of termination is t f , such that the terminal location
in Cartesian coordinates is r f = [x f , y f ], where x f = x(t f ), y f = y (t f ). The goal of
the estimation algorithm, the third-party viewer, is to predict the terminal location with
maximized probability, whereas the goal of the tracked vehicle is to obfuscate its path such
that the estimation algorithm assigns minimal probability to its actual terminal location.

Although initially described to particularly apply to the deployment of a UAV from a
submersible vehicle, the problem can be applied to any unit that launches a UAV and does
not want it’s terminal location to be easily predicted. For a submarine, compromising the
terminal location can lead to the identification and tracking of the unit, failure of themission,
and endangerment of the submersible and its crew. Ground troops, for similar reasons as
submarines, launch UAVs, allow them to perform their mission set, and recover them after
a fixed period of time. Thus, the path obfuscation of aircraft can be applied universally to
any unit that employs UAVs and wants to conceal their future location at when they recover
the aircraft.

To aid in the universal application of this study to all warfare communities and units, a
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generic set of terms will be used to describe the components of this problem. The aircraft
or UAV will be referred to as the “vehicle.” The individual or unit that launches the vehicle
will be referred to as the “operative.” The third-party viewer that is attempting to track the
vehicle and determination the location of the operative will be referred to as the “observer.”
The vehicle will be deployed by the operative and assigned an objective to accomplish.
After the accomplishment of the objective, the vehicle will then return to the operative.
This process will be referred to as the “mission profile.”

Assumptions and Unknowns of the Observer
In order to define the observer and his capabilities, a series of assumptions is used to limit
the scope of his knowledge. The most fundamental assumption for the observer is that
he will have full view of the vehicle throughout the entire duration of its flight including
lunching point. This is assumed to be a radar “view” of the vehicle such that the observer
is also assumed to know the entirety of the path that the vehicle has already traveled. This
prior path is therefore available to the observer for the analysis of prior behavior and can
be used as data for the prediction of the vehicle’s terminal location. This data will be
collected at varying time intervals and, just like a radar would use distance traveled between
samplings, the observer will therefore be able to predict the velocity of the aircraft from
its measurements. The final assumption for the observer is that the maximum achievable
time of flight (TOF) of the vehicle is known. Thus, with calculated vehicle velocity, the
observer can predict the maximum range of the vehicle. The velocity of the vehicle is not
an assumption, however, so the maximum range of the vehicle could oscillate over time
according to an undulating velocity profile.

While there are many assumptions made to define the role of the observer in this problem,
there are still key components that are unknown. The terminal location of the vehicle, for
example, is not only an unknown component of the problem, but the key parameter that
this problem is focused around. There are two other unknowns that a vehicle can use to its
advantage to cloak its terminal location. The most important variable that the vehicle and
operator have to work with is the termination time of the mission. Regardless of whether
or not the observer knows the maximum time of flight, the operator is free to terminate the
vehicle’s flight at any point up to and including the maximum time of flight. Further, the
path of the vehicle is made more difficult to predict in that the observer does not have any
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prior knowledge as to the mission profile or objective of the vehicle. Thus, the combination
of a varying termination time and unpredictable flight path works to the advantage of the
operator and is used in the obfuscation of the vehicle’s terminal location.

2.1.2 Recursive Bayesian Estimation
From the viewpoint of the observer, the estimation problem can be likened to traditional
target tracking [10]. This section provides the background on Bayes’ theorem, Bayesian
inference, and single target tracking with recursive Bayesian filtering. The latter is the
combination of a recursive update of a likelihood function in order to predict the probabilities
of the termination of the vehicle. A combination of all of these parameters leads to the
analysis and solution of the target tracking problem with recursive Bayesian filtering.

Likelihood Principle
This principle is a specific version of the conditionality principle which states that inference
should be solely based upon those events that actually occurred in the experiment [11].
Thus, only the observable data collected by the observer about the position of the vehicle
should be used in the development of the inference as to its future position. According
to Stone, the likelihood principle is only slightly more specific in that the principle holds
that the likelihood function evaluated for all the observations is the entire picture of the
information [11]. The likelihood function is therefore used to describe the observations
of the position of the vehicle and is relied upon as the sole source of information for the
prediction of the future position of the vehicle.

Bayes’ Theorem
Although it bears his name, the interpretation of Bayes’ theorem used in this paper was
actually developed by the work of Laplace [11]. The theorem describes the method by
which previous data can be resolved with current data to produce a future prediction. Prior
information collected by the observer provides knowledge about the vehicle in the parameter
space and the evaluation of the likelihood function provides a current set of position data
for the vehicle. The combination of these two functions to produce a state set, according
to Bayes’ theorem, should be accomplished by multiplying the two functions together and
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then normalizing their result to produce a posterior probability distribution. In this manner,
Bayes’ theorem is utilized to assimilate the data collected by the observer in this problem.

Recursive Bayesian Estimation Algorithm
The Bayesian estimation procedure is as follows. Let r̂ f = [x̂ f , ŷ f ] be the terminal location
estimate and S = [r (t1), r (t2), ...] = [r1, r2, r3...], where rk is the measured position at time
tk , denote the set of observations of the unmanned vehicle’s position in time. The posterior
probability density, p (tk, rk ), of a terminal location r f given measurements S is updated
recursively following the update rule seen in Equation (2.1).

p (tk, rk ) =
1
C

Lk (sk ) p− (tk−1, sk−1) (2.1)

where p− is the prior probability density, L(sk ) is the likelihood function, and p(tk, rk ) is the
resulting posterior probability density function. The constant C normalizes the posterior
such that it has unit integral. Evolution of the probability density function in time is
accomplished in the Bayesian framework by Equation (2.2).

p (tk, rk ) =
1
C

Lk (rk )
∫

p (tk, tk−1) p (tk−1, rk−1) drk−1 (2.2)

We define the transition probability density function, p (tk, tk−1), as a Gaussian distribution
corresponding to a random walk of the target. From the recursively updated probability
density function, a predicted terminal location of the aircraft can be determined. The
maximum of this function is used as the estimated terminal location of the aircraft. As the
functions updates, therefore, so does the estimated terminal location of the aircraft as the
maximum of the density function.

2.1.3 Likelihood Function Development
The utilization of Bayesian filtering implies the use of a likelihood functions; they are a
necessity in the use of filtering and recursive assimilation. Various likelihood functions
were developed to cover the different mission profiles of vehicles. Each likelihood function
offers a different probability distribution and corresponding density function.
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Cone Likelihood Function
One method that was studied to produce a likelihood function was the use of a likelihood
function that predicted the vehicle would terminate at the maximum edge of its range.
A cone-shaped likelihood function is the solution to this specific mission profile design
because it allows for a constantly increasing probability up until the maximum termination
point of the vehicle. This is the most basic likelihood function used in this paper to describe
a mission profile. The cone likelihood function is described according to the Equation (2.3).

L = h
√

(x − m)2 +
(
y − n

)2 (2.3)

In Equation (2.3), h is the slope of the cone and the cone’s center is defined by rk =
(
xk, yk

)
.

Figures 2.1 and 2.2 present the graphical illustrations of both the probability distribution
and the likelihood function generated by Equation (2.3). Of note is the maximum likelihood
location at the maximum range of the aircraft.

The use of a function that is statically defined as describing a vehicle that travels in a straight
line from its launch point to its termination point is improbable and unrealistic. In reality,
vehicles have varying courses to accomplish their mission and a straight line mission profile
only applies to vehicles focused on resupply and transit. Thus, while this likelihood function
is a viable option, it does not accurately describe the mission profiles that are associated
with this paper.

Blackbody-based Likelihood Function
This likelihood functionwas inspired by the decay and emission of blackbody radiation. The
purpose for the development of this functionwas to develop a predictor that did not have zero
probability at the origin nor did it make the assumption that the aircraft had a straight-line
mission from launch to termination. The blackbody likelihood function models a mission
profile that has a steeply increasing probability of termination up until approximately 35%
of maximum range with an exponentially decreasing probability afterwards towards the
maximum range of the aircraft. The blackbody likelihood function is described according
to Equation (2.4).
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Figure 2.1. Likelihood function illustrating how the position measurements
assign likelihood to spatial termination points as a function of the vehicle’s
maximum remaining range

L =
1
C

(R − a)2

e
R
R0

− b (2.4)

The likelihood function produced by Equation (2.4) is motivated by a blackbody radiation
curve where R is the distance from the vehicle’s current position, C is the normalizing
constant such that L has integral 1, R0 is the maximum range of the UAV, a is a constant
parameter to ensure a non-zero probability density at R = 0, and b is a shaping parameter
to ensure L exists at R = 0.

Figures 2.3 and 2.4 present the graphical illustrations of both the probability distribution and
the likelihood function generated by Equation (2.4). Of note is the maximum probability
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Figure 2.2. Cross-section of Figure 2.1 showing the two-dimensional spatial
likelihood distribution of an aircraft terminal location

location in comparison to the maximum probability previously seen in Figure 2.1.

The use of the blackbody radiation function has ambiguous shaping characteristics and
allows little modification to be made to create specificity for a mission profile. A desirable
function would allow for the shaping of the likelihood function around the maximum
probability point. To meet this need, the peak of the blackbody curve was derived so that it
could be shifted to fit the maximum flight time of the given vehicle. Thus, the probability
distribution of the blackbody function was used to generate the Driven Blackbody Function
found in Equation (2.5).

L =
1
C

(R − a)2

e
R
K

(2.5)
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Figure 2.3. Likelihood function illustrating how the position measurements
assign likelihood to vehicle termination points

In this equation, the parameter K is the shaping factor that is a function of the design
point RD. The design point can thus be modified to fit differing vehicle’s mission profiles.
Rearranged to include RD, the formula becomes Equation (2.6).

L =
1
C

(R − a)2

e
R

RD+a
2

(2.6)

2.1.4 Terminal Location Prediction Results
We now discuss the different probability densities presented by the varying likelihood
functions and the importance of using the blackbody likelihood function.
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Figure 2.4. Cross-section of Figure 2.3 showing the likelihood distribution
for an aircraft terminal location

Figure 2.5 illustrates simulation of a UAV traveling within an environment and an observer
assimilating position measurements. Four snapshots of simulations using the likelihood
function from Equation (2.3) (left column) and (2.4) (right column) illustrate differences
in the terminal prediction algorithms. In each simulation, the UAV travels in a looping
trajectory illustrated by the dashed white line. The color scale of each plot illustrates the
spatial distribution of the probability density function predicting the terminal location of
the UAV. As described by the color bars on the right-hand side of each figure, yellow
corresponds to higher probability density and likelihood that the UAV will terminate its
trajectory at the given location, whereas blue indicates the opposite. It is interesting to
note that both likelihood functions are similar in their probability density in that they are
concentrated at the termination point of the aircraft. On the other hand, it is important
to take into account that the blackbody radiation model includes a high probability at the

15



termination point of the aircraft throughout the simulation. The cone model, however,
varies its likelihood greatly throughout the simulation and, shown in Figure 2.5 (b) and (c),
has low probabilities at the termination point during multiple snapshots of the simulation.

The developed blackbody likelihood function allows for the prediction of vehicle termination
points with an accurate distribution of probabilities across the entire mission profile. The
ability to shape the likelihood function based upon past vehicle data allows for an increase in
capabilities of the observer and therefore an added component of complexity and difficulty
for the operator to obfuscate his path using future control algorithms.

2.2 The Vehicle

2.2.1 Path Development
With the development of an algorithm that accurately predicts the termination point of a
vehicle, the issue of path obfuscation can be addressed. In order to choose the path that
minimizes the vehicle’s chance of having its termination point predicted, one must first
develop a set of potential paths. From this set of paths, the path that best mitigates detection
will be chosen as the path for the aircraft to follow. For each mission profile and set of
preset conditions, a specific set of paths is generated. Given that every vehicle has a start
point, qinit , and an endpoint, qgoal , an infinite set of possible paths exists in between them.

In order to scale down the problem from an infinite number of paths, a polynomial path
generation method was selected with the stipulation that time and speed be held constant
for a given path. Generation of a path is dependent upon the specification of a waypoint,
qwpnt , or waypoints, qinit , and qgoal . Let each point be defined by an x-coordinate and
y-coordinate where the point qinit is defined such that qinit = [xinit ; yinit]. Let the matrix
τ (s) be defined as the set of all coordinates in a generated trajectory where s is a timing
function given for a specific mission profile. A polynomial generation method allows for
the matrix τ (s) = [x (s) ; y (s)] to be a continuous map from 0 to 1. The number of points
specified in the path determines the order of the polynomial.

For the purpose of this study, a second-order function was the polynomial used because
three points

(
qinit, qwpnt, qgoal

)
were specified. Incorporated in the matrix τ (s), the three

waypoints satisfy the conditions τ (0) = qinit, τ (0.5) = qwpnt, τ (1) = qgoal . The remaining

16



Figure 2.5. Evolution of the posterior probability function for vehicle position
as measurements are assimilated in time
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points in the x-plane are the solution of the second-order polynomial x (s) = as2 + bs + c,
where the coordinates for the y-plane are calculated in the same manner. The solution for
matrix τ is best achieved through matrix algebra and can be seen in the development from
Equations (2.7) to (2.11).

T (s) =


xinit xwpnt xgoal

yinit ywpnt ygoal


(2.7)

T (s) = M[S] (2.8)

T (s) = M



s2
qinit s2

qwpnt
s2

qgoal

s1
qinit s1

qwpnt
s1

qgoal

s0
qinit s0

qwpnt
s0

qgoal



(2.9)

In Equations (2.7) and (2.9), the sizes of the matrices will vary as a function of the number
of points specified in the path. If n points are predetermined, T (s) will be a 2 × n matrix
while matrix S will be of size n × n. Because the matrix dimensions will always agree, one
can use matrix algebra to solve for the unknown matrix, M .

M = T[S]−1 (2.10)

With the solution of Equation (2.10), one can then solve for the set of all trajectories τ. The
final solution shown below in Equation (2.11) is a set of x and y-coordinates modified by
the timing function s to dictate at what point in time the vehicle arrives at any point

(
x, y

)
.

τ = M



s2

s

1



(2.11)
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2.2.2 Trajectory Implementation
In this work, a quadratic function was used to describe the trajectory and the number of
waypoints tested was bounded to a set of one hundred from a 10 × 10 grid of x and y
coordinates (shown in Figure 2.6). Additional simplicity was achieved in the solution and
implementation of the problem by using a constant timing function, s, and therefore a
constant velocity throughout the time of flight. A lack of velocity variation allows for the
third-eye observer to have a better probability of predicting the aircraft’s terminal location
and it brings simplicity to the trajectory.

Figure 2.6. Set of all possible waypoints for the given study and an example
trajectory through one waypoint
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2.2.3 Path Obfuscation
The trajectory generation method presented in Subsection 2.2.1 was tested against the
observer prediction method developed in Section 2.1. The key features used to “fool” the
observer were the path and variation in the time of flight of the vehicle. Because the observer
has no indication as to how long the vehicle will fly, variation in the maximum time of flight
of the vehicle is key to the obfuscation of the vehicle’s terminal location. Five different
time profiles were tested ranging from a profile where the vehicle used 50% of its maximum
possible flight to a vehicle that used 70%. With 100 potential waypoints and five different
time profiles, the set of infinite paths was narrowed down to a set of 500 possible paths.
In order to determine which path provided the minimum probability of detection, tests
were compared to one another using the Kullback-Leibler Divergence (KL Divergence).
The KL Divergence is a measure of the disparity between two probability distributions.
Each probability distribution generated from a given trajectory was compared to a baseline
normalized Gaussian distribution for consistency of measurements. The images shown in
Figure 2.7 are the best obfuscated paths for each time of flight profile. Each path was
selected because it had the highest KL Divergence value from the potential waypoints at
that time profile.

Figure 2.8 shows the comparison between all of the KL Divergence values for the 500
potential paths. The vertical black and pink lines show the vehicle’s initial and goal points,
respectively. The vertical green line indicates the waypoint that provides the minimum
probability of detection. The figure further shows that the time profile that minimizes the
probability of detection is the one in which the vehicle only used 55% of its maximum
possible time of flight.

2.2.4 Results
KLDivergence values indicate that mission profiles that utilize less than 60% of the vehicles
maximum time of flight have the lower probabilities that their terminal location will be
predicted. Trajectories with waypoints near the terminal location and a path that continues
beyond it have lower probabilities that their terminal location will be predicted. Thus, the
greatest path obfuscation comes from the observer’s inability to determine when a vehicle
will terminate and the assumption that the vehicle will generally continue on its current
trajectory and not terminate near a point that it has already passed.
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(a) 50% TIme of Flight (b) 55% TIme of Flight

(c) 60% TIme of Flight (d) 65% TIme of Flight

(e) 70% TIme of Flight

Figure 2.7. The paths that best minimize a vehicle’s probability of 
detection for varying time of flight profiles
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Figure 2.8. Surface plots of all KL Divergence values for each test separated
by percent time of flight

2.3 Extrapolation Methods
Previous work in the field of extrapolation for the prediction of a vehicle’s location has
almost exclusively been done for future predicted position. Many works are available
addressing numerical methods for extrapolation; some prominent works can be found in
sources [12], [13], and [14]. The work in this thesis is most closely related to sources [15]
and [16], but the interested reader is referred to works [12], [13], and [14] for further reading.

Soechting et al. pursued an analysis of the predictive contributions that analytical models
offer to the domain of smooth pursuit [15]. Applicable to this work is their use of smooth
velocity, speed, and direction changes throughout their analysis and the application of their
analysis to them. The work revealed that with a constant speed but variable direction,
the target motion was very difficult to predict. In particular, their use of a Kalman filter
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generated “a predictive component whose importance could fluctuate” [15]. This work
was performed on sinusoidal paths and leaves the need for an analysis of extrapolation and
prediction for polynomial-based paths.

Looking towards the field of predictive path, the previous background on Bayesian filtering
largely covers this domain for extrapolation and likelihood of positioning. The work of
Thorvaldsson and Bandi illustrates the implementation of the Bayesian and Kalman filtering
methods in order to generate a smooth path prediction for the motion of a vehicle [16]. Their
use of thesemethods, while successful and unique, lacks the far-forward reaching component
of the prediction that this paper’s current work requires.
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CHAPTER 3:
Methodology

In this chapter we discuss the specific issues to be addressed by this thesis and how they are
going to be approached. Previously examined in Chapter 2, the terminology will remain
consistent as we examine the experimental setup moving forward.

This chapter has been divided into two sections aswe look at twodistinct, novel approaches to
advancing capabilities surrounding randomized path optimization. Chapter 3 first examines
how to improve the predictor and path generation models through the incorporation of wind
and a three-dimensional problem space.

Following the discussion of these improvements, we examine a unique redirection of the
predictor model in its application to predicting the location of the operator in Section 3.1.
Using anterior extrapolation from given vehicle location information over some span of the
vehicle’s flight up until its termination, the predictor will produce a probability distribution
offering information as to where the operator was when he launched the vehicle.

3.1 Incorporation of Wind
Vehicle flight is so largely affected by wind that it is crucial to model it properly. This
approach will seek to properly incorporate wind as a vector field so as to equally improve
the predictor method and the path obfuscation component of the problem.

3.1.1 Assumptions
For the purpose of this work, simplifying assumptions were made to both decrease potential
computation time and allow for universal applicability. The assumptions made are listed
below:

1. Uniform, time-variant wind field.
2. Vehicle’s maximum time of flight (TOF) is known.
3. Component directions of the wind add or subtract directly from the vehicle’s speed.

No preference is given to vehicle aerodynamics with respect to orientation relative to
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the wind vector.
4. Wind only acts in the x-y plane and has no component in the z-direction.
5. Wind field does not vary as a result of vehicle altitude.

These assumptions allow for consistency across various different vehicle platforms and
between the predictor and observer methods. The implementation of the above assumptions
in no way reduces the legitimacy of the data that is produced as a result.

3.1.2 Approach
Previously held constant throughout flight, the modification of the vehicle’s velocity will
be a function of the vehicle’s orientation at the previous time-step and the direction of the
wind vector. As a result of our assumptions, we can directly relate the component vectors
of the wind and the vehicle. These relations can be seen in Equations (3.1) and (3.2).

vxtotal = vwindcos(θwind) + vvechicle cos(θvehicle) (3.1)

vytotal = vwind sin(θwind) + vvechicle sin(θvehicle) (3.2)

In these relations, θwind is the angle of the wind vector measured counterclockwise from the
positive x-axis while θvehicle is the angle of the vehicle’s vector measured counterclockwise
from the positive x-axis. Through generic trigonometric identities, the velocities can
therefore be related to one another in order to produce an overall vehicle velocity shown in
Equation (3.3).

v2
total = v

2
xtotal + v

2
ytotal

. (3.3)

The dynamically changing vehicle velocity adds an increased component of complexity to
the predictor as it tries to predict the vehicle’s terminal location. Shifting from a generic
circular area of probability resulting from the multiplication of the vehicle’s remaining TOF
and constant velocity, varying velocity now creates an ever-changing region of potential
vehicle termination positions. While wind is often the nemesis of aircraft, here it can
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work cohesively to further obfuscate its path. The path planning methodology, unlike the
observer, benefits from the ability to select the best path prior to flight. Because of this and
the wind’s direction, its incorporation modifies the potential set of waypoints the vehicle
can reach as a result of an increased or decreased range.

3.2 Producing a Three-Dimensional Problem Space
The factor of vehicle altitude is important to consider when dealingwith aircraft. Traditional
aircraft flight would dictate that the vehicle would takeoff at its minimum altitude, fly to a
mission altitude, and then proceed to land at a lower altitude. Because of the complexity
of this problem, varying mission altitudes, and unpredictable paths, we must define a new
problem space and a means by which it can be approached.

3.2.1 Assumptions
In order to frame the problem and limit computational complexity, we first make simplifying
assumptions. These assumptions are listed below:

1. The vehicle starts and terminates at an altitude of 0 feet (sea level).
2. The aircraft floor (minimum altitude) is sea level (i.e., there is no potential for a

vehicle to fly below sea level).
3. The vehicle has known maximum rates of climb and descent known by the observer.
4. The vehicle has a maximum operating altitude (ceiling) known by the observer.
5. The vehicle is going to land (i.e. the vehicle must descend to an altitude of 0 at the

conclusion of its flight).

As a result of these assumptions, the problem space is bounded. Without a bounding of the
problem space, we could not accurately predict the effectiveness of the observer, nor could
we demonstrate the best obfuscation methods available to the vehicle and the operator.

3.2.2 Approach
Unlike the incorporation of wind, the expansion of the problem into the z-dimension does
not allow for similar integration in the observer and path planning domains. Thus, we will
examine how to incorporate the third dimension in each.
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3-D Predictor Model
In order to model the incorporation of altitude z in the predictor, we must account for
variation in vehicle flight. To best achieve the prediction of the vehicle’s termination and
avoid false predictions, we look to use a piece-wise view of the problem space.




Launching or Terminating 0 ≤ z ≤ 0.20(V ehicleCeiling)

Ascent or Descent Pro f ile 0.20(V ehicleCeiling) < z ≤ 0.50(V ehicleCeiling)

Mission Space 0.50(V ehicleCeiling) < z ≤ V ehicleCeiling.

We use this piece-wise function to bias the predictor towards predicting vehicle termination
at lower altitudes while maintaining the traditional prediction method in the "mission
space" domain. We will use this function and progressively iterate over a field of potential
probabilities to determine which set of parameters best biases the density function towards
the proper vehicle termination location. Incorporating both the start and ending profiles of
the vehicle’s flight allows for the predictor’s immediate incorporation in the tactics necessary
for Section 3.3.

Path Planning in 3-D
Using the 3-D problem space to the advantage of the vehicle is key to obfuscation success.
In our approach to this domain, we will analyze the vehicle’s obfuscation as a result of three
potential altitude profiles. Each profile provides different options for accomplishment of
the mission and obfuscation of path through altitude. Each altitude profile will include an
immediate climb tomission altitude and a period of flight at that altitude until the vehicle has
passed the waypoint and accomplished the mission. Altitude profile 1 will be characterized
by a flight path in which the vehicle does not descend to the termination point until it is
absolutely necessary as constrained by a safe rate of descent. Altitude profile 2 will include
an immediate departure from mission altitude to a 0.5 (MissionAltitude) for as long as
allowed by the flight before returning tomission altitude and then descending for termination.
Lastly, altitude profile 3 will depart from mission altitude to 0.2 (MissionAltitude). The
vehicle will then fly at this altitude until rate of descent restrictions indicate that the vehicle
must descend for termination. All three of these profiles will present different issues for the
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observer and will indicate the best flight profile for vehicle termination obfuscation.

3.3 Anterior Extrapolation for Initial Point Prediction
The extrapolation of vehicle path for the initial (launch) point can be intuitively looked at as
a reapplication of the Observer problem. Given a set of known points and an upper-bound
for the vehicle’s time of flight, we can restrict the vehicle’s possible initial positions to a
set domain. To accurately predict the vehicle’s launch point while accounting for variable
times of flight, we must reexamine the application of the Observer algorithm and note how
we can improve it for the purpose of predicting the vehicle’s initial point. We now discuss
the key area that needs to be explored in order to reapply the prediction algorithm properly
to achieve accurate anterior extrapolation for initial point prediction.

3.3.1 Optimal Scaling Factor RD

The utilization of the scaling factor RD was first introduced in Chapter 2.1.3. The equation in
which it is implemented is the driven blackbody likelihood function shown in Equation 2.5.
The key component here is the variable K . In its components, K is a function of constant a

and scaling factor RD. This relationship can be seen in Equation 3.4.

K =
RD + a

2
. (3.4)

For larger values of RD, the constant a becomes insignificant as RD

2 ≈
RD+a

2 . We will
therefore solely focus on the value of RD. To properly determine the optimal value of
RD for anterior extrapolation, we must eliminate all other factors that contribute to the
prediction of the vehicle’s termination point. Thus, we will iterate through possible RD

values varying percentages of the maximum range with a generic vehicle path, no wind,
and no altitude considerations. From this, we will examine the location of the maximum
probability in the posterior function at three different points in predictive time: 50% of path
seen, 75% of path seen, and 100% of path seen. The percent of RD that produces the lowest
average distance from the true initial point will be used to compute all further results. The
successful implementation of RD is crucial to the accuracy of the anterior extrapolation
method and its feasibility as a reliable algorithm moving forward.
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CHAPTER 4:
Results

Building off the processes outlined in Chapter 3, this chapter displays and discusses results
produced from the execution of the introduced methodology. In Section 4.1, we will first
look at how the incorporation of wind in the prediction and path planning algorithms
modified the vehicle’s potential obfuscation. Section 4.2 will then allow us to analyze
how varying altitude profiles improve vehicle obfuscation and successful prediction of
termination. Finally, Section 4.4 will examine the reapplication of the predictive techniques
to determine a vehicle’s starting location.

4.1 Wind-Influenced Results
The initial plan to incorporate the vehicle’s response to wind in component form allowed for
similar integration in both the prediction and path planning algorithms. When incorporated
into the prediction algorithm, the affect of wind, and each of its possible components
was examined. To verify the affect the wind had on the successful prediction of vehicle
termination, each test was compared against a generic test through the same waypoint with
no wind incorporated. The results of each comparison can be seen in Table 4.1.

Test Type KL Divergence Value Improvement in Prediction (Percent)
Baseline 80% TOF 8.98 N/A
Headwind of 5 kts 8.64 3.86
Tailwind of 5 kts 10.25 -14.09
Crosswind of 5 kts 9.43 -4.92

Note: A positive percentage indicates an increased probability of detection at its terminal
location

Table 4.1. Comparison of wind direction and its effects on termination prediction

From this, we find that only in the headwind scenario did the predictor improve its probability
of predicted termination. In terms of the predictor, this indicates that the shift in the
maximum probability for the likelihood function creates an unwarranted skewing of the data
towards the region in which the wind is blowing. From this, we make the determination
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that the incorporation of maximum range skewed by wind is overall less likely to predict
vehicle termination than the simple use of the vehicle’s maximum range. Thus, all of our
obfuscation tests were run on the modified and more informed prediction algorithm as
opposed to one improperly influenced by wind.

The incorporation of wind into the path planning aspect produced a myriad of different
results when tested across a broad spectrum of possible wind directions. The author
recognized that testing combinations of every possible direction and wind velocity was
unrealistic, and so the test environment was constrained to include wind directions at
increments of 45◦ and three different wind velocities to simulate light (5 kts), moderate (15
kts), and strong (30 kts) winds. The results of these tests are summarized in Figure 4.1.

Figure 4.1. Wind results represented in percent deviation from the baseline
prediction algorithm

Observing the trends from the different angles of wind, those that are offset by no more
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than 45◦ with respect to the vehicle straight line path (directly along the positive x-axis in
this case) produce the greatest obfuscation in path. Conversely, outside of that window, the
wind at all velocities decreased the vehicle’s ability to obfuscate its path. When examining
the affect of the wind velocity, one can note that an increased velocity directly correlates to
a magnification in the vehicle’s ability to obfuscate path. Overall, it can be stated that the
maximum obfuscation that results from the wind occurs when the wind acts as a tailwind
to maximally increase the vehicle’s velocity in the direction of the path.

While the assumption of constant wind velocity has been made, this does not translate
directly to a constant velocity for the vehicle. As the vehicle’s path changes with respect to
the direction of the wind, so does the vehicle’s velocity profile. Figure 4.2 is the velocity
profile for a vehicle with a cruise speed of 80 knots operating with themaximum obfuscation
profile of a wind along the positive x-axis (0◦).

Figure 4.2. Velocity profile that corresponds to the maximum obfuscation
wind direction of 0◦

Note that as the vehicle changes direction throughout its flight, velocity changes similarly
as a result of the new interaction between vehicle path and perceived wind. We know from
our data in Figure 4.1 that headwinds produce a less obfuscated path and therefore slower
velocities are correspond to poor path obfuscation. Applying this lens to Figure 4.2, we
can note that although the vehicle dips below the cruise speed of 80 knots, its increase in
velocity at the beginning and end of flight allow for an increase in obfuscation. Thus, a fast
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overall speed and increased speed near the initial and terminal points of a path correlate to
increased obfuscation.

4.2 Altitude Incorporation
The incorporation of altitude proved to provide improvement to the prediction algorithm
regardless of which altitude profile, seen in Chapter 3.2.2, was used. Table 4.2 indicates
that the longer the vehicle spends at a lower altitude, the greater the performance of the
prediction algorithm. Looking at the results from Altitude Profile 3, the vehicle’s utilization
of its lowest possible flight domain created the worst obfuscated path.

Test Type KL Divergence Value Improvement in Prediction (Percent)
Baseline 80% TOF 8.98 N/A
Altitude Profile 1 8.42 6.27
Altitude Profile 2 6.97 22.41
Altitude Profile 3 2.74 69.50
Note: A positive percentage indicates an increased probability of detection at its terminal
location

Table 4.2. Comparison of wind direction and its effects on termination prediction

This information is also backed up by the KL Divergence comparisons seen in Figure 4.3.
Altitude Profile 3 clearly provides the best obfuscated path over all possible waypoints.

Naturally, one can therefore conclude that the best possible obfuscation occurs when the
vehicle waits until the last possible moment to descend and terminate its flight. While
the other altitude profiles might not produce the best obfuscation of terminal location,
their ability to obfuscate the vehicle’s objective, an exploration of future work, could lend
credence to an argument that balances

4.3 Obfuscation of Varying Time Profiles
With the knowledge of the best obfuscation characteristics produced by wind and altitude,
we then incorporate them to determine the optimal time of flight (TOF) profile that provides
the bestmitigation of the terminal location. Comparing five TOFprofiles (50, 60, 70, 80, and
90%) over 100 possible waypoints, the TOF profile that corresponded to the usage of 70%
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Figure 4.3. Comparison of the KL Divergence values for each altitude profile
over a set of 100 waypoints

of the vehicles maximum potential time of flight produced the best possible obfuscation.
Compared against the next best profile at 60% time of flight, 70% time of flight produced
14 more possible obfuscated vehicle paths. Additionally, while it did not contain the “best”
obfuscated path of all possible paths, the difference between the best obfuscated path and
the best path produced by 70% TOF is only 0.08%.

4.4 Anterior Extrapolation for the Initial Point

4.4.1 Selection of Optimal RD Value
First looking at the modeling that will best produce the optimal anterior extrapolation
algorithm, we analyze the ideal RD scaling value. According to the plan outlined in
Chapter 3.3.1, the values in Table 4.3 were computed. Each row is indicative of the percent
of the maximum range (RD) used to shift the peak of the likelihood function. The columns
represent the distance that the maximum probability point is from the true initial point at
various different percentages of the path seen by the Observer.

Looking at the values in Table 4.3, however, we seek to improve a matching of the algorithm
in utilizing multiple RD scaling values corresponding to the potential time of flight remain-
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Percent of
RD

Distance from
true initial point
at 50% path seen
(km)

Distance from
true at 75% Path
Seen (km)

Distance from
true at 100% Path
Seen (km)

Average Distance
from true (km)

40% of RD 53.97 74.00 5.39 44.45
50% of RD 27.68 82.27 7.43 39.13
60% of RD 36.87 81.39 9.01 42.42
70% of RD 53.27 80.08 10.31 47.88

Table 4.3. Analysis of maximum probability distance from true initial position
of the aircraft with respect to the maximum-range scaling factor

ing. So, we examine the results produced in using one RD scaling factor while the time
remaining is at least 40% of the vehicle’s maximum time of flight, with the other scaling
factor value (a percent of RD) corresponding to a terminal time region. The results for these
tests can be seen in Table 4.4.

Percent of RD Distance from
true at 50%
Path Seen
(km)

Distance from
true at 75%
Path Seen
(km)

Distance from
true at 100%
Path Seen
(km)

Average Dis-
tance from
true (km)

40% and 50% of RD 53.97 82.31 7.43 47.90
50% and 30% of RD 27.68 53.97 3.16 28.27
50% and 40% of RD 27.68 66.50 5.22 33.13
50% and 60% of RD 27.68 92.96 9.19 43.28
50% and 70% of RD 27.68 97.86 10.77 45.44

Table 4.4. Analysis of maximum probability distance from true initial position
of the aircraft as a result of a two-fold variation in the maximum-range scaling
factor

The tests run in Table 4.4 were inspired by the results found in Table 4.3. Notably, we see
that the best scaling factor for initial time of flight is 50% while a scaling factor of 40%
produces the smallest separation of predicted start point and true start point. Thus, we
explore that relationship and tailor subsequent tests to discern the optimal combination of
scaling factors. Results indicated that the optimal combination of scaling factors was an
initial scaling factor of 50% with a terminal region scaling factor of 30%. The combination
of these two components ensures that the anterior extrapolation algorithm will produce an
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accurate prediction of the vehicle’s starting point.

4.4.2 Starting Point Prediction
The reapplication of the observer algorithm to the prediction of the vehicle start point
produced a myriad of results. Given that there are various different potential paths a vehicle
could take, we will narrow down the set of paths to six paths that cover the general types of
waypoints near the start location, terminal location, close to the centerline of the waypoint
set, and substantially deviating from the centerline. The analysis of these waypoints over
varying percents of path observed will indicate how successful we can expect to be in
predicting the initial point of the vehicle. In order to measure the successful application of
the anterior extrapolation algorithm, we will provide two metrics to compare against. We
first examined the distance (in kilometers) between the predicted initial point (indicated by
the maximum probability on the probability density function) and the true initial point of
the vehicle. Further, we look at all of the potential initial points of the vehicle as a factor
of its cruise velocity and remaining time. Comparing the prediction to this, we will label
the algorithm as a success if it decreases the amount of potential starting points by at least
50%. Figure 4.4 shows the representation of this filtering of initial points visually. In
particular, the regions highlighted represent according to their probability the top 30% of
probable initial points (green), the top 10% of probable initial points (cyan), and the top 5%
of probable initial points (magenta).

Applying this methodology to a myriad of paths and times of observed path, we find that
the algorithm is incredibly successful at narrowing down our search field in every scenario.
The data to support this is shown in Table ??. Each set of rows in this table represents a
different percentage of the time of flight that was available to the Observer. For example,
if the vehicle has a total time of flight of only two hours and the Observer has 50% time
of flight seen, only the final 60 minutes of the vehicle’s path is available for use in the
anterior extrapolation method. Not only were these different percentages tested, but each
was compared against six paths that imitate all potential difficult paths the vehicle could
use.

Regardless of the amount of time of flight observed, the data presented in Table ?? indicates
that the algorithm continually achieves successful prediction within at least 50% probability.
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Observer sees 50% of path
Waypoint Position (0,25) (25,50) (50,25) (50,50) (75,50) (100,25)
Distance from Maxi-
mum Probability (km)

58.7 18.2 53.0 11.2 14.7 109.4

Successful prediction
within at least 50%
Probability

Yes Yes
(95%)

Yes
(70%)

Yes
(95%)

Yes
(95%)

Yes
(90%)

Observer sees 60% of path
Waypoint Position (0,25) (25,50) (50,25) (50,50) (75,50) (100,25)
Distance from Maxi-
mum Probability (km)

49.4 13.8 54.4 19.8 111.5 96.4

Successful prediction
within at least 50%
Probability

Yes Yes
(95%)

Yes
(70%)

Yes
(95%)

Yes
(95%)

Yes
(70%)

Observer sees 70% of path
Waypoint Position (0,25) (25,50) (50,25) (50,50) (75,50) (100,25)
Distance from Maxi-
mum Probability (km)

39.5 16.9 55.7 33.4 90.7 84.1

Successful prediction
within 50% Probability

Yes Yes
(95%)

Yes Yes
(95%)

Yes
(90%)

Yes
(70%)

Observer sees 80% of path
Waypoint Position (0,25) (25,50) (50,25) (50,50) (75,50) (100,25)
Distance from Maxi-
mum Probability (km)

32.2 38.1 56.7 49.3 72.9 69.5

Successful prediction
within 50% Probability

Yes
(70%)

Yes
(90%)

Yes Yes
(70%)

Yes
(70%)

Yes
(70%)

Observer sees 90% of path
Waypoint Position (0,25) (25,50) (50,25) (50,50) (75,50) (100,25)
Distance from Maxi-
mum Probability (km)

53.6 22.2 57.1 32.1 41.0 58.2

Successful prediction
within 50% Probability

Yes
(70%)

Yes
(95%)

Yes Yes
(90%)

Yes
(90%)

Yes

Note: If the anterior extrapolation algorithm narrowed down the search field by more than 50%,
the percentage of initial points ruled out of the search is indicated in parentheses

Table 4.5. Compilation of results seen from the utilization of the anterior extrapolation
method over six different observation profiles
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Figure 4.4. Visualization of the results computed by the anterior extrapola-
tion algorithm with 90% of the vehicle’s path observed

In other words, the anterior extrapolation algorithm produced a 100% success rate in
narrowing down the field of potential starting points by at least 50%. Delving deeper into
the data, we see that on many occasions the algorithm exceeded the 50% bar and eliminated
from eligibility an even higher percentage of waypoints. Regarding trends in the data, we
can see that the more path the anterior extrapolation algorithm is able to observe, the smaller
the average distance of the maximum probability from the true initial point. However, the
values produced at all observer times produced significant results and could lead to the
eventual persecution of any assets at or near the initial point of the vehicle’s path.
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CHAPTER 5:
Conclusions and Future Work

As we have now discussed the results of this present work, this section will look at their
importance as a whole and how they can be improved in the future. The first portion of this
chapter, Section 5.1, discusses the main takeaways from Chapter 4 and their applicability
to current operators and environments. Next, in Section 5.2, we look at the many possible
ways that this work can be improved for more robust solutions and increased applicability.

5.1 Conclusions
In this thesis we extended previous work, by considering the addition of more variables:
wind, altitude and varying time profiles. We also introduce a new methodology and studied
the potential identification of the initial point that the aircraft was launched from.

As a result of the work completed, we are able to conclude that the best possible wind
direction to obfuscate path occurs within 45◦ of the vehicle’s straight line path. This is
a result of the observed correlation between vehicle speed and path obfuscation. As the
vehicle’s speed increases, so does the probability of obfuscation. This can be contributed
to both the fact that vehicle is rapidly changing direction, but also is a result of the fact that
the vehicle need not spend as much time in the air allowing for observations.

The altitude profile that is best associated with vehicle obfuscation is one in which termina-
tion, or any decrease in altitude, is delayed until the last possible moment. The delay in the
termination of the vehicle prohibits the premature narrowing of the prediction algorithm as
a result of a higher probability of termination. Moreover, the obfuscation of vehicle path
hinges on the time of flight profile and the best possible selection is the use of 70% of the
vehicle’s potential time of flight. While this path does not produce the single most optimal
path, it does produce the largest number of obfuscated paths with minimal sacrifice (0.08%)
on the upper-end of vehicle obfuscation.

In terms of the anterior extrapolation, the algorithm predicts with confidence the terminal
location of the vehicle at nearly every possible percent of path observed. While the accuracy
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of this prediction varies, one can say with confidence that the application of the anterior
extrapolation method narrows down the search field significantly and produces an increased
capability by allowing the Observer to determine the starting point of most vehicles it
encounters.

5.2 Future Work
While this work already stands on its own with readily applicable results, there are ways in
which it can be improved to provide a better solution to both the operator and the observer.
As these are problems that have been considered in the development of this work but not yet
addressed, a potential method for their implementation and the benefit of their incorporation
is also offered. The future work is not divided into different categories as a change to one
component of the system will likely require the adaptation of the others as well. Thus, each
proposed addition is suggested to improve the entire method and not just one aspect.

Considering the constraints that could be placed on paths as a result of vehicle limitations,
there are many areas that could be incorporated into the program. Vehicle specific cornering
velocity, turn radius, and rates of climb and descent could be used to bound the path in
various different ways. The cornering velocity and turn radius figures would limit sharp
changes in direction that could arise from waypoints near the initial or terminal locations.
Further, vehicle aerodynamics could be considered to incorporate how much the wind will
alter the vehicle’s flight at varying angles relative to its path.

Considering the obfuscation of path, further consideration could be given to obfuscated the
vehicle’s waypoint as well. The ability to obfuscate the objective would certainly provide
additional security to the operative. Additionally, the incorporation of multiple waypoints
would produce many more possible paths and would likely allow for an increase in the
vehicle’s obfuscation potential.

Looking at the anterior extrapolation method, there is significant room for improvement.
While any form of proper extrapolation is successful, the ability to only do so at 90% of path
is not robust or necessarily realistic for real-world applications. Modifying the algorithm
with an increased number of considerations could potentially narrow the field of view of
the observer and therefore increase its probability of successful extrapolation. This could
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be achieved by adding constraints on where the vehicle will terminate such that it will not
land within a certain distance of its initial location.
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APPENDIX: Path Planning Code

%===========================
% S c r i p t name : RandomizedPathOpt imza t ionMain
% Wr i t t e n by : ENS M i t c h e l l T . Heaton
% Las t mod i f i e d : 02 JUN 2017
% Di s c l a ime r : MODIFY AT YOUR OWN RISK ! ! !
%===========================
% The main f i l e from which a l l t h e s i s work i s c o o r d i n a t e d .

Take a s e r i e s o f
% use r i n p u t s f o r what t h e d e s i r e d o u t p u t i s and c o o r d i n a t e

t h e proper
% e x e c u t i o n o f p e r i p h e r y f u n c t i o n f i l e s .

% INPUT ARRAYS :
% ∗ . t x t f i l e
% Re f e r e n c e f o r i t e r a t i n g th rough a d i r e c t o r y
%
% OUTPUT ARRAYS :
% TBD
%
%
%===========================
%===========================
%% Workspace Cleanup

c l e a r
c l o s e a l l
c l c

%% Globa l l y used v a r i a b l e s e t u p ( used as i n p u t s i n a t l e a s t
two f u n c t i o n s )
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q _ i n i t = [ 0 ; 0 ] ; % A i r c r a f t s t a r t i n g p o i n t ( i n k i l om e t e r s )
q_term = [ 1 00 ; 0 ] ; % Term ina t i o n p o i n t o f t h e a i r c r a f t (

f i n a l p o s i t i o n ) ( i n k i l om e t e r s )
tMin = 0 ; % minimum t ime o f f l i g h t o f t h e v e h i c l e ( a lways =

0)
tMax = ( 2 ) ∗60∗60; % f i r s t number i s i n hours bu t c o n v e r t e d

t o s econds i n p u t ( ’ What i s t h e maximum t ime o f f l i g h t o f
t h e v e h i c l e ? ’ ) % Maximum TOF o f t h e v e h i c l e as a
f u n c t i o n o f t h e a s sump t i on i t w i l l o p e r a t e a t v e l o c i t y
f o r b e s t endurance

vBE = convve l ( 60 , ’ k t s ’ , ’km / s ’ ) ; % u n i t s : km / s ( a f t e r
c o n v e r s i o n from kno t s ) V e l o c i t y f o r b e s t endurance o f t h e
a i r c r a f t . Th i s w i l l change w i t h a g i v en p l a t f o rm . Value

i s i n k n o t s c o n v e r t e d t o km / h
ObFreq = 0 . 0 1 ; % in Hz . In o rde r t o a c h i e v e o b s e r v a t i o n s per

minute , m u l t i p l y v a l u e by 60 .
r e qT ime In t = 1 / ObFreq ; % I n d i c a t e s how t o space t h e t ime

i n t e r v a l s i n t h e t ime v e c t o r
d i s tTO = conv l e ng t h (250 , ’ f t ’ , ’km ’ ) ; % A i r c r a f t t a k e o f f

d i s t a n c e ( d i s t a n c e t o r o t a t i o n , bu t used as t h e
a c c e l e r a t i o n parame te r f o r t h e v e h i c l e )

timeTO = dis tTO / ( 0 . 5 ∗ vBE) ; % Computa t ion f o r t h e t ime t o
reach vBE g i v en l i n e a r a c c e l e r a t i o n

mi s s i o nA l t = conv l e ng t h (1000 , ’ f t ’ , ’km ’ ) ; % A i r c r a f t h e i g h t
needed t o " per form m i s s i o n "

miss ionTime = 360 ; % Time i n seconds t h a t t h e a i r c r a f t must
be on m i s s i o n a l t i t u d e around t h e t a r g e t ( 1 / 2 be f o r e , 1 / 2
a f t e r )

r a t eC l imb = 600 ; % Rate o f c l imb i n f e e t per minu t e
r a t eC l imbMe t r i c = r a t eC l imb .∗ ( 0 . 3 0 4 8 / ( 1 0 0 0∗ 6 0 ) ) ; % Rate o f

c l imb i n km / s
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%% User mod i f i a b l e components

%E s t a b l i s h o p t i o n s t h a t t h e u s e r w i l l have as t o how t h e
code w i l l run / t h e

%ou t p u t s i t w i l l produce
% op t i o n1 = ’ Gener i c pa th t e s t on 2−D p r e d i c t o r ’ ;
% op t i o n2 = ’ Gener i c pa th t e s t on 3−D p r e d i c t o r ’ ;
% op t i o n3 = ’ D i sp l a y s e t o f a l l p o s s i b l e pa ths ’ ;
% op t i o n4 = ’ Produce KL−Divergence a n a l y s i s o f p r e d e t e rm i n ed

p r e d i c t i o n s e t ’ ;
% op t i o n5 = ’ Fu l l s y s t em run : produce s e t o f p o s s i b l e pa t h s

over v a r y i n g t ime p r o f i l e s , run p r e d i c t o r a g a i n s t them ,
produce KL−Divergence , and i n d i c a t e t h e op t ima l pa th / t ime
combina t ion ’ ;

% op t i o n6 = ’ Cancel . I d i d no t mean t o c l i c k run . E x i t t h e
danger zone ’ ;

% Which a l t i t u d e p r o f i l e w i l l be used .

p r o f i l e 1 = ’ S t ay ␣ a t ␣ m i s s i on ␣ a l t i t u d e ␣ t h e ␣ e n t i r e ␣ t ime ␣and␣
on ly ␣ d e c r e a s e ␣ a l t i t u d e ␣when␣ n e c e s s a r y ␣ f o r ␣ d e s c e n t . ’ ;

p r o f i l e 2 = ’ Climb␣ immed i a t e l y ␣ t o ␣m i s s i on ␣ a l t i t u d e , ␣ t h en ␣
immed i a t e l y ␣ d ip ␣down␣ t o ␣ 0 .5∗ Mis s i onA l t ␣ between ␣waypo in t ␣
i f ␣ p o s s i b l e . ␣ Con t i nue ␣ p r o c e s s ␣ o f ␣ c l imb ␣and␣ descend ␣ u n t i l ␣
f i n a l ␣ d e s c e n t . ’ ;

p r o f i l e 3 = ’ Climb␣ immed i a t e l y ␣ t o ␣m i s s i on ␣ a l t i t u d e , ␣ s t a y ␣ a t ␣
m i s s i on ␣ a l t i t u d e ␣ u n t i l ␣ m i s s i on ␣ comple ted , ␣ d i p ␣down␣ t o ␣
0 .20∗ Mis s i onA l t ␣ and␣ ho ld ␣ u n t i l ␣ d e s c e n t ␣ t o ␣ t e rm i n a t i o n ’ ;

% Allow use r t o s e l e c t o p t i o n t o run
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% op t i onCho i c e = menu ( ’ Choose t h e o u t p u t s and / or t e s t s t h a t
you would l i k e t o run . ’ , op t i on1 , op t i on2 , op t i on3 , op t i on4 ,
op t i on5 , o p t i o n6 ) ;

p r o f i l e C h o i c e = menu ( ’ Choose␣ t h e ␣ a l t i t u d e ␣ p r o f i l e ␣ t h a t ␣you␣
would␣ l i k e ␣ t o ␣ t e s t . ’ , p r o f i l e 1 , p r o f i l e 2 , p r o f i l e 3 ) ;

prompt = { [ ’As␣a␣ p e r c e n t a g e ␣ of ␣ t h e ␣maximum␣ p o s s i b l e ␣ t ime ␣ of ␣
f l i g h t ␣ ( ’ , num2str ( tMax / 3600 ) , ’ ␣ hou r s ) , ␣how␣much␣ t ime ␣
would␣you␣ l i k e ␣ t h e ␣ v e h i c l e ␣ t o ␣ use ’ ] } ;

d l g _ t i t l e = ’ I n p u t ’ ;
num_l ines = 1 ;
d e f a u l t a n s = { ’ 80 ’ } ;
answer = i n p u t d l g ( prompt , d l g _ t i t l e , num_l ines , d e f a u l t a n s ) ;
percTOF = s t r 2 d o u b l e ( c e l l 2ma t ( answer ( 1 , 1 ) ) ) / 1 0 0 ;
whi le ( percTOF <= 0) | | ( percTOF >1)

warnBox = warnd lg ( ’ The␣ va l u e ␣must ␣be␣a␣ v a l i d ␣ p e r c e n t a g e ␣
g r e a t e r ␣ t h an ␣0␣and␣ l e s s ␣ t h an ␣ or ␣ equa l ␣ t o ␣100 ’ , ’
I n v a l i d ␣ i n p u t ! ’ ) ;

w a i t f o r ( warnd lg ( ’ The␣ va l u e ␣must ␣be␣a␣ v a l i d ␣ p e r c e n t a g e ␣
g r e a t e r ␣ t h an ␣0␣and␣ l e s s ␣ t h an ␣ or ␣ equa l ␣ t o ␣100 ’ , ’
I n v a l i d ␣ i n p u t ! ’ ) )

answer = i n p u t d l g ( prompt , d l g _ t i t l e , num_l ines , d e f a u l t a n s )
;

percTOF = s t r 2 d o u b l e ( c e l l 2ma t ( answer ( 1 , 1 ) ) ) / 1 0 0 ; % User
v a l u e s f o r p e r c e n t t ime o f f l i g h t c o n v e r t e d t o
dec ima l .

i f ( percTOF > 0) && ( percTOF <=100)
i f e x i s t ( ’warnBox ’ , ’ v a r ’ )

d e l e t e ( warnBox ) % Close s unne c e s s a r y warning box
.

end
break

end
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end

prompt = { ’ In ␣ kno t s ␣ ( k t s ) , ␣ i n d i c a t e ␣ t h e ␣magn i tude ␣ of ␣wind␣ i n
␣ t h i s ␣ s c e n a r i o . ’ , ’ In ␣what ␣ d i r e c t i o n ␣ i s ␣ t h e ␣wind␣ blowing ␣
i n ␣ d eg r e e s ␣ from␣ t h e ␣ p o s i t i v e ␣x− a x i s ␣ ( i f ␣ b lowing ␣ from␣ t h e ␣
SW␣ to ␣ t h e ␣NE, ␣ ang l e ␣ i s ␣45␣ d eg r e e s ) ? ’ } ;

d l g _ t i t l e = ’Wind␣ components ’ ;
num_l ines = 2 ;
d e f a u l t a n s = { ’ 30 ’ , ’ 0 ’ } ;
answer = i n p u t d l g ( prompt , d l g _ t i t l e , num_l ines , d e f a u l t a n s ) ;
windMag = s t r 2 d o u b l e ( c e l l 2ma t ( answer ( 1 , 1 ) ) ) ;
windDir = s t r 2 d o u b l e ( c e l l 2ma t ( answer ( 2 , 1 ) ) ) ;

% Va l i d a t e u s e r i n p u t s f o r t h e wind . Sneaky l i t t l e u s e r
t r i e d t o i n p u t t h e

% wrong va lue , bu t momma didn ’ t r a i s e no f o o l .
whi le ( windMag < 0) | | ( windDir <0) | | ( windDir >360)

warnBox = warnd lg ( ’Wind␣must ␣be␣a␣ va l u e ␣ g r e a t e r ␣ t h an ␣0␣
and␣wind␣ d i r e c t i o n ␣must ␣be␣a␣ va l u e ␣ between ␣0␣and␣360␣
i n ␣ d eg r e e s . ’ , ’ I n v a l i d ␣ i n p u t ! ’ ) ;

w a i t f o r ( warnd lg ( ’Wind␣must ␣be␣a␣ va l u e ␣ g r e a t e r ␣ t h an ␣0␣and
␣wind␣ d i r e c t i o n ␣must ␣be␣a␣ va l u e ␣ between ␣0␣and␣360␣ i n ␣
d eg r e e s . ’ , ’ I n v a l i d ␣ i n p u t ! ’ ) )

answer = i n p u t d l g ( prompt , d l g _ t i t l e , num_l ines , d e f a u l t a n s )
;

windMag = s t r 2 d o u b l e ( c e l l 2ma t ( answer ( 1 , 1 ) ) ) ;
windDir = s t r 2 d o u b l e ( c e l l 2ma t ( answer ( 2 , 1 ) ) ) ;
i f ( windMag < 0) && ( windDir <0) && ( windDir >360)

i f e x i s t ( ’warnBox ’ , ’ v a r ’ )
d e l e t e ( warnBox ) % Close s unne c e s s a r y warning box

.
end
break
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end
end

windMag = convve l ( windMag , ’ k t s ’ , ’km / s ’ ) ;

% withWind = ’ Yes , use wind b i a s i n t h e p r e d i c t o r . ’ ;
% noWind = ’No , o p e r a t e w i t h a c o n s i s t e n t maximum p o s s i b l e

range . ’ ;
p red i c tWi thWindCho ice = 0 ; %menu ( ’ Would you l i k e t h e

p r e d i c t o r t o op e r a t e w i t h an R_max b i a s from t h e v a r y i n g
v e l o c i t y due t o wind ? ’ , withWind , noWind ) ;

wi t hA l t = ’Yes , ␣ use ␣ a l t i t u d e ␣ t o ␣ b i a s ␣ t h e ␣ p r e d i c t o r . ’ ;
noAl t = ’No , ␣ o p e r a t e ␣ w i t h ou t ␣ p r o c e s s i n g ␣ a l t i t u d e ␣ p o s i t i o n s . ’

;
p r e d i c tW i t hA l t i t u d e = menu ( ’Would␣you␣ l i k e ␣ t h e ␣ p r e d i c t o r ␣ t o ␣

o p e r a t e ␣wi th ␣ p r e f e r e n t i a l ␣ t e rm i n a t i o n ␣ t ime ␣ computed ␣ as ␣a␣
r e s u l t ␣ o f ␣ t h e ␣ v e h i c l e ␣ a l t i t u d e ? ’ , w i t hAl t , noAl t ) ;

%% Crea te t h e v a r i a b l e s and p l o t t i n g r e g i o n f o r t h e Observer
: P o s i t i o n P r e d i c t o r

% Crea t i n g p l o t t i n g r e g i o n
StdX = 200 ; % Standard d e v i a t i o n i n t h e x− d i r e c t i o n
StdY = 200 ; % Standard d e v i a t i o n i n t h e y− d i r e c t i o n
GridMax = round ( vBE .∗ tMax ) ; % Rmax_ in i t ∗ 1 . 1 ; %

E s t a b l i s h e s t h e maximum bound o f t h e p l o t t i n g g r i d
xGrid = −GridMax : 0 . 5 : GridMax ; % Grid bounds f o r t h e p l o t
yGrid = −GridMax : 0 . 5 : GridMax ; % Grid bounds f o r t h e p l o t
[ l ikeX , l i k eY ] = meshgrid ( xGrid , yGr id ) ;
p o s t e r i o r = ones ( s i z e ( l i k eX ) ) / sum ( sum ( ones ( s i z e ( l i k eX ) ) ) ) ;
RmaxArray = zeros ( s i z e ( l i k eX ) ) ;
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% L i k e l i h o o d f u n c t i o n c o n s t a n t s
L = 1 ; % Ba s e l i n e va l u e o f t h e l i k e l i h o o d f u n c t i o n f o r

p o s t e r i o r a s s i m i l a t i o n
a = 2 ; % Cons t an t f o r t h e l i k e l i h o o d f u n c t i o n

% I n i t i a l p o s i t i o n
xLas t = 0 ; % E s t a b l i s h e s t h e i n i t i a l p o s i t i o n o f t h e a / c
yLas t = 0 ; % E s t a b l i s h e s t h e i n i t i a l p o s i t i o n o f t h e a / c

% Figure Se tup
f i g u r e ( ) ; c l f
s1 = sur f ( l ikeX , l ikeY , p o s t e r i o r ) ;
s e t ( s1 , ’ FaceAlpha ’ , 0 . 5 , ’ EdgeColor ’ , ’ none ’ )
hold on
p1 = p l o t ( 0 , 0 , ’−k ’ , ’ LineWidth ’ , 2 . 5 ) ;
x l ab e l ( ’ x ’ )
y l ab e l ( ’ y ’ )
hold o f f
drawnow
view ( 2 )

%% Tr a j e c t o r y v a r i a b l e s and s e t u p
TOFused = percTOF .∗ tMax ; % Un i t s : s e conds .
numTra jPo i n t s = TOFused / r e qT ime In t ; % Th i s i s t h e bound on

number o f waypo i n t s . Th i s w i l l s e t a bound on waypo i n t s .
Th i s p r o v i d e s a rough e s t i m a t e i n o rde r t o c r e a t e a
r e l a t i v e bound on t h e p o t e n t i a l samp l ing i n t e r v a l
n e c e s s a r y .

yMax = vBE . ∗ ( 1 / 2 ) .∗ TOFused ; % E s t a b l i s h e s t h e maximum y−
p o s i t i o n o f a waypo in t t o vary no more than 1 /2 o f t h e
v e h i c l e ’ s p o t e n t i a l TOF from t h e c e n t e r l i n e

yMin = −yMax ;
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x = l i n s p a c e ( q _ i n i t ( 1 ) , q_term ( 1 ) , 10 ) ;
y = l i n s p a c e ( yMin , yMax , 1 0 ) ;
[X,Y] = meshgrid ( x , y ) ;
d a t a S e t = 0 ; %#ok<NASGU>

% Compute t h e components o f wind
windX = windMag∗ cosd ( windDir ) ;
windY = windMag∗ s i n d ( windDir ) ;

% Plo t f o r c u r r e n t waypo in t
f i g = f i g u r e ;
axs = axes ( ’ P a r e n t ’ , f i g , ’ Nex tP l o t ’ , ’Add ’ ) ;
p l t ( 1 ) = p l o t ( axs , [ q _ i n i t ( 1 ) , q_term ( 1 ) ] , [ q _ i n i t ( 2 ) , q_term ( 2 )

] , ’ x : k ’ ) ;
p l t ( 2 ) = p l o t ( reshape (X , 1 , [ ] ) , reshape (Y , 1 , [ ] ) , ’ . b ’ ) ;
p l t _q_wpn t = p l o t ( axs , 0 , 0 , ’ og ’ ) ; % Plo t f o r ( h i g h l i g h t )

c u r r e n t waypo in t be i ng used
p l t _ t r a j = p l o t ( axs , 0 , 0 , ’ r ’ ) ; % Plo t f o r t h e t r a j e c t o r y o f

t h e a i r c r a f t

% P l o t f o r c u r r e n t a l t i t u d e p r o f i l e

f i g u r e ( ) ; c l f
z1 = p l o t ( 0 , 0 , ’− r ’ ) ;
x l ab e l ( ’ Time␣ of ␣ F l i g h t ␣ ( m inu t e s ) ’ )
y l ab e l ( ’ Vehc i l e ␣ A l t i t u d e ␣ ( f e e t ) ’ )
drawnow
view ( 2 )

%% KL Dive rgence se tup − c r e a t e gau s s i a n t o compare a g a i n s t .
% Dec lare t h e gau s s i an f o r compar i son
mu = [100 0 ] ;
Sigma = 50∗ eye ( 2 ) ;
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x1 = xGrid ; x2 = yGrid ;
[X1 , X2] = meshgrid ( x1 , x2 ) ;
F = mvnpdf ( [ X1 ( : ) X2 ( : ) ] ,mu , Sigma ) ;
F = reshape ( F , l eng th ( x2 ) , l eng th ( x1 ) ) ;
KLMat = zero s ( s i z e (X, 1 ) , s i z e (X, 2 ) ) ;
DNQ = 0 ;
d a t a S e t = 0 ;

%% Meat o f t h e code : t r a j e c t o r y gene ra t r ed , p r e d i c t o r run
f o r each pa th .

f o r i = 1 : s i z e (X, 1 )
f o r j = 1 : s i z e (X, 2 )

% Tr a j e c t o r y g e n e r a t i o n and p l o t t i n g
q_wpnt = [ 5 0 ; 2 5 ] ; %[X( i , j ) ; Y ( i , j ) ] ; % E s t a b l i s h e s

c u r r e n t waypo in t f o r t h i s l oop
[ xPath , yPa th ] = P o s i t i o n F u n c t i o n ( q _ i n i t , q_term ,

q_wpnt , numTra jPo i n t s ) ; % Produces t r a j e c t o r y
p o i n t s f o r t h e pa th .

[ pathTimeVec , vTota lVec ] = WindAdjust ( vBE , windMag ,
windDir , xPath , yPa th ) ;

% zTo t a lV e c = z e r o s ( 1 , l e n g t h ( pathTimeVec ) )+
m i s s i o n A l t ;

[ zTo ta lVec ] = a l t i t u d e F u n c t i o n ( r a t eC l imbMe t r i c ,
pathTimeVec , q_wpnt , xPath , yPath , miss ionTime ,
m i s s i onA l t , p r o f i l e C h o i c e ) ;

pathTimeVecMin = pathTimeVec . / 6 0 ;
zTo t a lVecFee t = conv l e ng t h ( zTota lVec , ’km ’ , ’ f t ’ ) ;
s e t ( z1 , ’ xData ’ , pathTimeVecMin , ’ yData ’ , zTo t a lVecFee t )

;
s e t ( p l t_q_wpnt , ’ xData ’ , q_wpnt ( 1 ) , ’ yData ’ , q_wpnt ( 2 ) ) ;
s e t ( p l t _ t r a j , ’ xData ’ , xPath , ’ yData ’ , yPa th ) ;
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di sp ( [ ’ P l o t ␣ o f ␣waypo in t ␣ ’ , num2str ( j + 10∗ ( i −1) ) , ’ ␣ o f ␣
’ , num2str ( s i z e (X, 2 ) ∗ s i z e (X, 1 ) ) , ’ ␣ t o t a l ␣ waypo in t s
’ ] )

d a t a S e t = d a t a S e t + 1 ;
% The Observer t e rm i n a t i o n p r e d i c t i o n .
i f (max ( pathTimeVec ) <= TOFused ) & (~ i snan (

zTo ta lVec ) )%#ok<BDSCI> % Could be swapped f o r
tMax , bu t t h i s a l l ow s f o r t h e p e r c e n t a g e s c a l i n g
t o be t h e upper bound . Thus , a l l p a t h s x% and
under p r o v i d e us w i t h __ KL−Div Va lue s

NumObs = f l o o r (max ( pathTimeVec ) . / r e qT ime In t ) ; %
Number o f o b s e r v e r samp l i ng s du r i ng t h e
f l i g h t . Used f l o o r f u n c t i o n because i f a t ime
i n t e r v a l i sn ’ t comp l e t e and t h e v e h i c l e

lands , i t w i l l no t s e e t h e v e h i c l e anyways .
obsTimeVec = ( 0 : r e qT ime In t : NumObs∗ r e qT ime In t ) ; %

Vec to r f o r t h e t ime v e c t o r t h e o b s e r v e r w i l l
use t o sample and see t h e v e h i c l e ’ s p o s i t i o n

.
xVals = zero s ( 1 , l eng th ( obsTimeVec ) ) ;
yVals = zero s ( 1 , l eng th ( obsTimeVec ) ) ;

f o r m = 1 : l eng th ( obsTimeVec )
% Radar o b s e r v a t i o n o f t h e v e h i c l e by t h e

ob s e r v e r .
% Requ i r e s i n t e r p o l a t i o n t o a ch i e v e t h e

v e h i c l e ’ s p o s i t i o n
% in be tween p o i n t s on t h e v e h i c l e ’ s t r a c k

i n case t h e t ime
% samp l i ng s don ’ t match e x a c t l y .
tNow = obsTimeVec (m) ;
nowInd = f i nd ( pathTimeVec <=tNow , 1 , ’ l a s t ’ ) ;
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x I n t e r p = i n t e rp1 ( [ pathTimeVec ( nowInd ) ,
pathTimeVec ( nowInd +1) ] , [ xPa th ( nowInd ) ,
xPa th ( nowInd +1) ] , tNow ) ;

y I n t e r p = i n t e rp1 ( [ pathTimeVec ( nowInd ) ,
pathTimeVec ( nowInd +1) ] , [ yPa th ( nowInd ) ,
yPa th ( nowInd +1) ] , tNow ) ;

z I n t e r p = i n t e rp1 ( [ pathTimeVec ( nowInd ) ,
pathTimeVec ( nowInd +1) ] , [ zTo ta lVec ( nowInd )
, zTo ta lVec ( nowInd +1) ] , tNow ) ;

xVals (m) = x I n t e r p ; % Th i s adds t h i s
c o o r d i n a t e t o t h o s e p r e v i o u s l y seen by
t h e radar / o b s e r v e r

yVals (m) = y I n t e r p ; % Th i s i s t h e pa th t h a t
t h e o b s e r v e r s e e s .

tRemain = tMax−tNow ; % Amount o f p o s s i b l e
r ema in ing t ime t h e ob s e r v e r knows

altNow = z I n t e r p ;
% De t e rm i na t i o n loop f o r u t i l i z a t i o n o f t h e

Pe r c en t o f Path
% P r e d i c t i o n based on t ime

% i f ( tRemain > 0.15∗ tMax )
% t e rm i n a t i o nPa t hP e r c = 0 . 7 5 ; %

Percen tage f o r t h e e x p e c t e d t r a v e l o f v e h i c l e as a
f u n c t i o n o f i t s maximum a l l owab l e TOF

% e l s e
% t e rm i n a t i o nPa t hP e r c = 1;
% end
%

% De t e rm i na t i o n s t a t em e n t f o r p r o b a b i l i t y o f
t e rm i n a t i o n

% based on v e h i c l e a l t i t u d e w i t h r e s p e c t t o
p e r c e n t o f

% m i s s i o n a l t i t u d e
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i f p r e d i c tW i t hA l t i t u d e == 1
i f ( al tNow > (0 . 5 0∗ mi s s i o nA l t ) ) && (

tRemain > 0 .10∗ tMax )
t e rm i n a t i o n S c a l e P e r c = 1 ;

e l s e i f ( al tNow > 0 .20∗ mi s s i o nA l t ) && (
tRemain > 0 .10∗ tMax )
t e rm i n a t i o n S c a l e P e r c = 0 . 7 5 ;

e l s e i f ( al tNow <= 0 .20∗ mi s s i o nA l t ) && (
tRemain > 0 .10∗ tMax ) && ( tNow >
m i s s i o nA l t / r a t eC l imbMe t r i c )
t e rm i n a t i o n S c a l e P e r c = 0 . 3 0 ;

e l s e
t e rm i n a t i o n S c a l e P e r c = 1 ;

end
e l s e

t e rm i n a t i o n S c a l e P e r c = 1 ;
end

% Crea t i n g t h e Rmax ar ray
i f p red i c tWi thWindCho ice == 1

f o r o = 1 : l eng th ( xGr id )
f o r q = 1 : l eng th ( yGr id )

xD i f f = xGrid ( o )− x I n t e r p ;
yD i f f = yGrid ( q )− y I n t e r p ;
ra t ioNow = xD i f f / yD i f f ;
i f ( xDi f f >0) && ( yDi f f >0) % Path

be tween 0 and 90 deg r e e s
t h e t a P a t h = a t a nd ( ra t ioNow ) ;

e l s e i f ( xDi f f <0) && ( yDi f f >0) %
Path be tween 90 and 180
deg r e e s
t h e t a P a t h = 180 + a t a nd (

ra t ioNow ) ;
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e l s e i f ( xDi f f <0) && ( yDi f f <0) %
Path be tween 180 and 270
deg r e e s
t h e t a P a t h = 180 + a t a nd (

ra t ioNow ) ;
e l s e i f ( xDi f f >0) && ( yDi f f <0) %

Path be tween 270 and 0
t h e t a P a t h = 360 + a t a nd (

ra t ioNow ) ;
e l s e i f ( xD i f f > 0 ) && ( yD i f f ==0)

% Path d i r e c t i o n i s 0
deg r e e s .
t h e t a P a t h = 0 ;

e l s e i f ( xDi f f < 0 ) && ( yD i f f ==0)
% Path d i r e c t i o n i s 180
deg r e e s .
t h e t a P a t h = 180 ;

e l s e i f ( xD i f f ==0) && ( yDi f f >0) %
Path d i r e c t i o n i s 90 Degrees
t h e t a P a t h = 90 ;

e l s e i f ( xD i f f ==0) && ( yDi f f <0) %
Path d i r e c t i o n i s 270

deg r e e s
t h e t a P a t h = 270 ;

e l s e i f ( xD i f f ==0) && ( yD i f f ==0)
% Neces sa ry f o r t h e p o s i t i o n
p r e d i c t o r .
t h e t a P a t h = 0 ;

end
vxTo t a l = windMag∗ cosd ( windDir )

+ vBE∗ cosd ( t h e t a P a t h ) ;
vyTo t a l = windMag∗ s i n d ( windDir )

+ vBE∗ s i n d ( t h e t a P a t h ) ;
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vTo t a l = sqr t ( vxTo t a l ^2 +
vyTo t a l ^2 ) ;

RmaxArray ( o , q ) = vTo t a l .∗ tRemain
.∗ t e rm i n a t i o n S c a l e P e r c ;

end
end

e l s e
RmaxArray = vBE∗ tRemain∗

t e rm i n a t i o n S c a l e P e r c ;
end

% L i k e l i h o o d Ca l c u l a t i o n s
R = sqr t ( ( l ikeX −x I n t e r p ) . ^ 2 + ( l ikeY −y I n t e r p

) . ^ 2 ) ; % Ca l c u l a t i o n o f t h e d i s t a n c e
from t h e c u r r e n t p o s i t i o n f o r b lackbody

% l i k e l i h o o d d e t e rm i n a t i o n
K = ( RmaxArray + a ) . / 2 ; % Cons t an t t o s h i f t

t h e cu rve t o have t h e h i g h e r l i k e l i h o o d s
near an a n t i c i p a t e d d e s i g n p o i n t Rmax

L = ( (R + a ) . ^ 2 ) . / exp (R . / K) ; % The
l i k e l i h o o d o f t h e oc cu r r enc e w i t h t h e
s p e c i f i e d pa rame t e r s

% No rma l i z a t i o n
L = L / sum ( sum (L ) ) ;
L (L<eps ) = 10∗ eps ;

% Updat ing t h e p o s t e r i o r f u n c t i o n f o r t h e
new da ta

p o s t e r i o r = L .∗ p o s t e r i o r ;
p o s t e r i o r = p o s t e r i o r / sum ( sum ( p o s t e r i o r ) ) ;
Gaus = exp ( −1 / (2∗ StdX ) ∗(− l i k eX ) . ^2 −1 / (2∗ StdY
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) ∗(− l i k eY ) . ^ 2 ) ;
Gaus = Gaus / ( sum ( sum ( Gaus ) ) ) ;
p o s t e r i o r = convo lve2 ( p o s t e r i o r , Gaus , ’ same ’ )

;
s e t ( s1 , ’ ZData ’ , p o s t e r i o r )
s e t ( p1 , ’XData ’ , xVals ( 1 , 1 :m) , ’YData ’ , yVals

( 1 , 1 :m) )
drawnow

end

s p r i n t f ( ’ Sav ing ␣%d ’ , d a t a S e t )
save ( s p r i n t f ( ’ DataRun_%d . mat ’ , d a t a S e t ) , ’

p o s t e r i o r ’ , ’ xPa th ’ , ’ yPa th ’ , ’ q_wpnt ’ , ’ percTOF ’
, ’vBE ’ , ’ r e qT ime In t ’ , ’ xGr id ’ , ’ yGr id ’ )

KLMat ( i , j ) = KLDiv ( F , p o s t e r i o r ) ;

e l s e
KLMat ( i , j ) = NaN ;

end

c l e a r v a r s p o s t e r i o r L Gaus
p o s t e r i o r = ones ( s i z e ( l i k eX ) ) / sum ( sum ( ones ( s i z e (

l i k eX ) ) ) ) ;

end
end

save ( s p r i n t f ( ’KLMat . mat ’ ) , ’KLMat ’ )
di sp ( [ ’ The␣KL␣Dive rgence ␣ f o r ␣ t h i s ␣ t e s t ␣ i s ␣ ’ , num2str (KLMat

( 1 , 1 ) ) ] )
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